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Abstract

In the second part of the research on wave propagation in the piezoelectric coupled plate by interdigital transducer

(IDT), the analytical model of the wave excitation by IDT with both infinite and finite length is derived the first time.

This work is an extension of the research on the application of IDT in the piezoelectric media, which is mainly used in

time delay device. The extension of the research can provide an analytical solution for the wave excitation by IDT in a

metal substrate surface bonded by a piezoelectric layer. Such solution may have practical values in many fields, i.e. the

health monitoring of structures. In addition, such an extension enables the piezoelectric coupling effects fully modelled

in the mathematical model. The analysis is based on the type of surface wave solution discussed in Part 1 of the research

paper. The derivation of the solution for the case of infinitely long IDT is under a hypothesis of certain configuration of

the IDT wavelength. The validity of the hypothesis is verified for most of IDT wavelength designs. The analysis of the

wave propagation by use of a finitely long IDT is further obtained by Fourier transform. The mathematical analysis

shows that the wave propagation excited by the IDT is exactly the surface wave which was studied in Part 1 [Int. J.

Solids Struct., 39, 1119–1130] of the research. Hence, the analytical solution of the wave propagation in the piezoelectric

coupled plate is derived, which reveals the surface wave propagating in the structure. This theoretical research is useful

for the application of health monitoring of structures by IDT, and may be used as the framework for the design of IDT

in wave excitation of smart structures. � 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectric coupled plate; Interdigital transducer; Dispersion characteristics; Wave phase velocity; Health monitoring of

structures

1. Introduction

A practical interdigital transducer (IDT) with finite length bonded by a metal plate is shown in Fig. 1.
IDT is a thin piezoelectric film surface bonded on either piezoelectric or unpiezoelectric substrate for the
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use of wave excitation or reception of structures. On the surface of the wafer, a pattern of electrodes is
designed, which comprises two alternating sets of fingers which are connected to external electric power
sources for the energy supply. As introduced in Part 1 of the paper, IDT was first used to excite the surface
wave (SAW) devices in radar communication equipment as filters and delay lines, and some consumer areas
such as pagers, mobile phones and sensors (Morgan, 1998; Campbell, 1998; White, 1998). It also has large
potential in separating, amplifying and storing signals and in other signal processing applications in
acoustoelectronics (Auld, 1973a,b; Parton and Kudryavtser, 1988). This device is recently found to have
large potential to be used as attractive sensors for various physical variables, such as force, electric fields,
magnetic fields, temperature, pressure, etc. (Varadan and Varadan, 2000).

Although there are considerable researches on the subject of analysis of IDT, the analytical solution for
the wave excitation by IDT is still unsolved completely. Most of the previous work attempted at this issue
by combining analytical and numerical methods as clearly stated by Milsom et al. (1977). The difficulties of
the analyses lie in the full electromechanical coupling in the structure. Tseng (1968), Coquin and Tierstan
(1967) and Joshin and White (1969) analysed this problem by solving an electrostatic problem, and sub-
stituted the distribution of the electric fields into the electromechanical coupled equation and hence ob-
tained the secondary electric fields and the distribution of displacement fields. In the monograph of Parton
and Kudryavtser (1988), the analytical solutions for an IDT which generates Rayleigh surface waves in a
hexagonal 6 mm piezoelectric medium was presented based on the same procedure. However, they could
not fully model the piezoelectric effects in their models. Another popular analysis proposed by Balakrirev
and Gilinskii (1982) is to use Green matrix method to solve a two-dimensional (2D) problem for a half
unbounded crystal. This method provided a situation where there is only a unit linear charge on the

Fig. 1. Piezoelectric coupled plate surface bonded by IDT.
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boundary. However, in practice, the method is hardly feasible for an arbitrary crystal due to the difficulties
in constructing the Green matrix. Some recent progresses are contributed by the finite element method
(Hasegawa and Koshiba, 1990; Yong et al., 1998; Xu, 2000), the boundary element method (Hashimoto
and Yamaguchi, 1991), and 2D’s Green function (Huang and Paige, 1998). However, the behaviour of
SAW by IDT still cannot be predicted accurately and modelled analytically. Ogilvy (1996) presented an
approximate analysis for predicting the generation of elastic waves by IDT in multi-layered piezoelectric
materials. However, neither the width of the IDT fingers nor the dimensions of the IDT are explicitly taken
into account. All the solutions for the above mentioned applications of IDT are focused on the wave
propagation in a piezoelectric medium surface bonded by a metal layer (Zhang et al., 1993; Ventura et al.,
1995; Morgan, 1985).

As mentioned in the first part of the paper, the applications by IDT in the health monitoring of
structures have been attempted (Badcock and Birt, 2000; Monkhouse et al., 2000). In this new application
of IDT, the structure to be studied mainly consists of the metal substrate surface bonded by a piezoelectric
layer used to excite wave propagation in this piezoelectric coupled structure. Such new potential of IDT
provides a challenge for the research on the wave excitation by IDT in the piezoelectric coupled structure
mentioned in the previous paragraph. An extension for the research on the wave propagation by IDT in
piezoelectric structures is expected to provide an accurate mathematical model to couple the piezoelectric
coupling effects fully.

The purpose of this paper is to derive an analytical solution for SH wave propagation excited by IDT in
a piezoelectric coupled plate. The dispersion characteristics of the wave propagation have already been
discussed in Part 1 of the paper based on the type of surface wave solution. The mathematical governing
equation and corresponding boundary conditions for the analytical solution for the wave excitation are
provided with infinitely long IDT modelled first. A hypothesis on the wavelength of IDT is discussed for the
deduction of the analytical solution and verified. The analytical analysis of the wave propagation with a
finitely long IDT is further obtained by Fourier transform. The derivation of the analytical solution for the
wave propagation in the piezoelectric coupled structure by IDT is important in the design of IDT in the
health monitoring of structures and other engineering applications.

2. Mechanics model of wave propagation by use of IDT

An IDT was deposited on the piezoelectric coupled plate shown in Fig. 1. An electric voltage is hence
provided across the electrodes producing an alternative electric field in the materials and causing wave
propagation of the same frequency in the piezoelectric coupled plate.

The dispersion characteristics of the SH wave propagation in this structure has been studied in the first
part of the paper, and the type of SAW solution has been presented. In this part, the wave excitation by use
of IDT will be studied hereafter.

As the solutions for the deflection and shear stress of the metal core, the deflection, the electric potential
and the shear stress of the piezoelectric layer have already been obtained in Eqs. (13), (17)–(23) in the first
part of the research, the following deductions will be shown without repeating the same procedures in the
first part of the research paper.

According to the coordinate system in Fig. 1, since the IDT is infinite length and the period of electric
field in x1 is 4L due to the wavelength of IDT, the above displacement solution for metal part can be
expressed in form of series as,

u03 ¼
X1
i¼i1

C1ie
�v0ix2

�
þ C2ie

v0ix2
�
eiðxt�kix1Þ ð1Þ
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where

ki ¼
p
L

i
�

þ 1

2

�
; v0

i ¼ ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

kiv0

� �2
s

; i1 ¼
x
v0

L
p

�
� 1

2

	

The symbol ½	
means the integer part of a number. From the expression of i1, it can be seen the condition of
x=ki < v0 is satisfied, which means the surface wave solution is employed in the discussion as stated in Part 1
of the research.

Similarly, the deflection of the piezoelectric layer can be expressed as follows based on the solutions in
Part 1,

u3 ¼
X1
i¼I

ðA1ie
�vix2 þ A2ie

vix2Þ exp ix t
��

� kix1
x

��
when

x
ki
< v; v0 ð2Þ

u3 ¼
Xi2
i¼i1

ðA1i cos vix2 þ A2i sin vix2Þ exp ix t
��

� kix1
x

��
when v0 >

x
ki
> v ð3Þ

where

vi ¼ ki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

kiv

� �2













vuut ; v2 ¼ �cc44

q
; i2 ¼

x
v

L
p

�
� 1

2

	
; I ¼ maxði1; i2Þ

According to Eqs. (19) and (20) in Part 1, the electric potential is obtained,

/ ¼
X1
i¼I

B1ie
�kix2

��
þ B2ie

kix2
�
þ e15

N11

A1ie
�vix2ð þ A2ie

vix2Þ
	
exp ix t

��
� kix1

x

��
if

x
ki
< v; v0 ð4Þ

/ ¼
Xi2
i¼i1

B1ie
�kix2

��
þ B2ie

kix2
�
þ e15

N11

ðA1i cos vix2 þ A2i sin vix2Þ
	
exp ix t

��
� kix1

x

��
if v0 > c > v

ð5Þ
The electric displacement is thus obtained by

D2 ¼ e15
ou3
ox2

� N33

o/
ox2

¼
X1
i¼I

�N11kið�B1ie
�kix2 þ B2ie

kix2Þ exp ix t
��

� kix1
x

��
if

x
ki
< v; v0 ð6Þ

D2 ¼
Xi2
i¼i1

�N11kið�B1ie
�kix2 þ B2ie

kix2Þ exp ix t
��

� kix1
x

��
if v0 > c > v ð7Þ

The shear stress in the metal core is expressed as follows from Eq. (21) in Part 1,

r0
23 ¼

X1
i¼I

c044 ð
h

� v0
iÞC1ie

�v0ix2 þ v0
iC2ie

v0ix2
i
exp ix t

��
� kix1

x

��
ð8Þ

The shear stress in the piezoelectric layer is shown from Eqs. (22) and (23) from Part 1,

r23 ¼
X1
i¼I

ð
h

� viÞ�cc44 A1ie
�vix2ð � A2ie

vix2Þ þ ð � kiÞe15 B1ie
�kix2

�
� B2ie

kix2
�i

exp ix t
��

� kix1
x

��
if

x
ki
< v; v0

ð9Þ
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and

r23 ¼
Xi2
i¼i1

ð
h

� viÞ�cc44 A1i sin vix2ð � A2i cos vix2Þ þ ð � kiÞe15 B1ie
�kix2

�
� B2ie

kix2
�i

exp ix t
��

� kix1
x

��

if v0 > c > v ð10Þ
The potential /0 in the vacuum can be derived by solving the electronic Maxwell equation,

r2/0 ¼ 0 ð11Þ
Such solution for /0 and D0 can be obtained as follows when seeking the solution which remains finite as
x2 ! �1:

/0 ¼
X1
i¼0

Fie
kix2 exp ix t

��
� kix1

x

��
ð12Þ

D0 ¼
X1
i¼0

�N0kiFie
kix2 exp ix t

��
� kix1

x

��
ð13Þ

The above mathematical model can be solved analytically together with the following boundary conditions,
at x2 ¼ 0:

u3 ¼ u03 ð14Þ

r23 ¼ r0
23 ð15Þ

/ ¼ 0 ð16Þ
at x2 ¼ �h:

r23 ¼ 0 ð17Þ

/ ¼ /0 ð18Þ

D2 ¼ D0 ðoutside electrodesÞ ð19Þ

/ ¼ /0 ¼ V ðinside electrodesÞ ð20Þ
at x2 ¼ h0:

r0
23 ¼ 0 ð21Þ

The analytical solution for the wave propagation in the piezoelectric coupled plate with infinitely long IDT
and finitely long IDT will be given in the following sections separately.

3. Analytical solutions for wave propagation with infinitely long IDT

The deflection, electric potential and stress in the piezoelectric layer are expressed by Eqs. (2), (4) and (9)
irrelevant of the comparison of the bulk shear wave velocities of the metal substrate and the piezoelectric
layer. Nevertheless, Eqs. (3), (5) and (10) are only valid for the case that the bulk shear wave velocity of the
host metal plate is larger than that of the piezoelectric layer. In order to obtain the analytical solution for
the above mathematical model given in the previous section, a hypothesis on IDT wavelength is provided,
i.e. I ¼ maxði1; i2Þ ¼ 0. This hypothesis reveals the fact that the all the solutions of the physical variables in
the piezoelectric layer will follow Eqs. (2), (4) and (9) by proper design of the basic wave number k0 ¼ p=2L,
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i.e. the design of wavelength of IDT. Taking steel-PZT 4 piezoelectric coupled plate as an example, the bulk
shear wave velocity of steel and PZT 4 are about v steel ¼ 3281 m=sj , v PZT 4 ¼ 2351 m=sj . If the frequency of
the excitation voltage is used as 1.4 MHz applied to the IDT. The hypothesis of I ¼ 0 requires L < 5:5 mm,
which means the wavelength of IDT is 2.2 cm. Such requirement is satisfied by most of the designs of IDT
wavelength. When gold-PZT 4 is employed in the estimations, it shows that the wavelength of the standard
electrode pattern is around 1.1 cm which can also be satisfied in most of the designs of the IDT. Upon the
above observations, the hypothesis of using Eqs. (2), (4) and (9) for the solutions of wave propagation in
the piezoelectric layer is thus reasonable and valid for most of the IDT designs, and will be used in the
following analysis. It is noted that all the above analyses are based on the surface wave solution assumed in
the piezoelectric layer. The wave excitation of other types of the wave solutions by IDT is beyond the scope
of this paper.

Boundary conditions expressed in Eqs. (14)–(21) are rewritten as follows when the solutions in the metal
substrate, the piezoelectric layer, and the vacuum are taken from the preceding analyses:

X1
i¼0

ðC1i þ C2iÞeikix ¼
X1
i¼0

ðA1i þ A2iÞeikix1 ð22Þ

X1
i¼0

ð�viÞ�cc44ðA1i � A2iÞ þ ð�kiÞe15ðB1i � B2iÞeikix1 ¼
X1
i¼0

ð�v0
iÞc044ðC1i � C2iÞeikix1 ð23Þ

X1
i¼0

B1i

�
þ B2i þ

e15

N11

ðA1i þ A2iÞ
�
eikix1 ¼ 0 ð24Þ

X1
i¼0

ðð�viÞ�cc44ðA1ie
v2h � A2ie

�v2hÞ þ ð�kiÞe15ðB1ie
v1h � B2ie

�v1hÞÞeikix1 ¼ 0 ð25Þ

X1
i¼0

Bi1e
v1h

��
þ B2ie

�v1h
�
þ e15

N11

A1ie
v2h

�
þ A2ie

�v2h
��

eikix1 ¼
X1
i¼0

Fie
�kiheikix1 ð26Þ

X1
i¼0

ð�N11ð�kiB1ie
kih þ kiB2ie

�kihÞ þ N0kiFie
�kihÞeikix1 ¼ 0 a < x1 < L ð27Þ

X1
i¼0

Fie
�kiheikix1 ¼ 0 0 < x1 < a ð28Þ

X1
i¼0

C1ie
�v0h0

�
� C2ie

v0h0
�
¼ 0 ð29Þ

The mathematics solution for all the seven non-zero coefficients C1i, C2i, A1i, A2i, B1i, B2i, Fi (i ¼ 1; 2; . . . ;1)
will be obtained from Eqs. (22)–(29).

From Eq. (29), we have

C1i ¼ C2ie
2v0h0 ð30Þ

Substituting the above expressions in Eqs. (22)–(24) yield the following relations,

A1i þ A2i ¼ �N11

e15
B1ið þ B2iÞ ð31Þ
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A1i � A2i ¼ G1iB1i þ G2iB2i ð32Þ

where

G1i ¼ � kie15

vi�cc44
� v0

ic
0
44

vi�cc44

N11

e15

e2v
0h0 � 1

e2v0h0 þ 1
; G2i ¼

kie15

vi�cc44
� v0

ic
0
44

vi�cc44

N11

e15

e2v
0h0 � 1

e2v0h0 þ 1

Thus A1i and A2i are obtained from the above equations as,

A1i ¼ H1iB1i þ H2iB2i ð33Þ

A2i ¼ H3iB1i þ H4iB2i ð34Þ
where

H1i ¼
1

2
G1i

�
� N11

e15

�
; H2i ¼

1

2
G2i

�
� N11

e15

�
; H3i ¼ � 1

2
G1i

�
þ N11

e15

�
; H4i ¼ � 1

2
G2i

�
þ N11

e15

�

Substituting Eqs. (33) and (34) into Eqs. (25) and (26) yields,

H1ie
vih

 
� H3ie

�vih þ kie15

vi�cc44
ekih

!
B1i þ H2ie

vih

 
� H4ie

�vih � kie15

vi�cc44
ekih

!
B2i ¼ 0 ð35Þ

i.e.

J1iB1i þ J2iB2i ¼ 0 ð36Þ

ekih

�
þ e15

N11

H1ie
vih þ e15

N11

H3ie
�vih

�
B1i þ e�kih

�
þ e15

N11

H2ie
vih þ e15

N11

H4ie
�vih

�
B2i ¼ Fie

�kih ð37Þ

i.e.

J3iB1i þ J4iB2i ¼ Fie
�kih ð38Þ

The coefficients B1i and B2i can thus be expressed in terms of Fi as follows:

B1i ¼
Fie

�kih

J3i � J1i
J2i

J4i
ð39Þ

B2i ¼
Fie

�kih

J4i � J2i
J1i

J3i
ð40Þ

Substituting the above two expressions into Eq. (27) gives,

X1
i¼0

kiFie
�kih N0

 
þ N11e

kih

J3i � J1i
J2i

J4i
� N11e

�kih

J4i � J2i
J1i

J3i

!
eikix1 ¼ 0 a < x1 < L ð41Þ

By defining

F i ¼ Fie
�kih N0

 
þ N11e

kih

J3i � J1i
J2i

J4i
� N11e

�kih

J4i � J2i
J1i

J3i

!
ð42Þ

Eqs. (28) and (41) may be rearranged as

X1
i¼0

F ie
ikix1 ¼ 0 0 < x1 < a ð43Þ
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X1
i¼0

kiF ið1þ LiÞeikix1 ¼ V a < x1 < L ð44Þ

where

Li ¼ NK

 
þ N11e

kih

R1i � Q1i
Q2i

R2i
� N11e

�kih

R2i � Q2i
Q1i

R1i

!�1

� 1

Rewriting Eqs. (43) and (44) in their real function forms gives,X1
i¼0

F i cos i
�

þ 1

2

�
�xx ¼ 0 �aa < �xx < p ð45Þ

X1
i¼0

i
�

þ 1

2

�
F ið1þ LiÞ cos i

�
þ 1

2

�
�xx ¼ V 0 < �xx < �aa ð46Þ

where �xx ¼ px1=L, �aa ¼ pa=L.
The solutions for Eqs. (45) and (46) can be obtained from an infinite system of linear algebraic equations

(Bateman and Erdelyi, 1955; Parton and Kudryavtser, 1988).
The set of equations are given as,

F i ¼
VPiðcos �aaÞ

iþ 1
2

� �
K cos �aa

2

� ��X1
n¼0

F nLnbni ði ¼ 1; 2; . . . ;1Þ ð47Þ

where

bni ¼ i
�

þ 1

2

�Z p

0

Pn cos nð ÞPi cos nð Þ sin ndn ð48Þ

Pi cos nð Þ ¼
ffiffiffi
2

p

p

Z n

0

cos i þ 1
2

� �
xdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos x� cos n
p ð49Þ

K cos
n
2

� �
¼
X1
i¼0

Pi cos nð Þ
i þ 1

2

� � ð50Þ

Piðcos nÞ in the above equation is the standard integral representation for Legendre polynomial and
Kðcos n=2Þ is the full elliptic integral of the first kind (Bateman and Erdelyi, 1955).

If the finite N terms are used in Eq. (47) on the condition that the convergence of the solution is ensured
by the Legendre polynomial theory, the result of the coefficients F i ði ¼ 1; 2; . . . ;NÞ can thus be obtained
from the following equation:

½L
 F
� �

¼ V

K cos �aa
2

� � fPg ð51Þ

where

½L
 ¼

1þ L1b11 L2b21 	 	 	 LNbN1

L1b12 1þ L2b22 	 	 	 LNbN2

..

. ..
. ..

. ..
.

L1b1N L2b2N 	 	 	 1þ LNbNN

2
6664

3
7775 ð52Þ
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fPg ¼

P1 cos �aaÞ
P2ðcos �aaÞ

..

.

PN ðcos �aaÞ

8>>><
>>>:

9>>>=
>>>;

ð53Þ

and fF g ¼ fF 1; F 2; . . . ; F NgT.
From Eq. (51), the solution of fF g is obtained as,

fF g ¼ V
Kðcos �aa

2
Þ ½L


�1fPg ð54Þ

The coefficients fF g ¼ fF1; F2; . . . ; FNgT is thus derived from Eq. (42)

fF g ¼ diag ekih Lið
�

þ 1Þ
�

F
� �

¼ V
Kðcos �aa

2
Þ diag ekih Lið

�
þ 1Þ

�
L½ 
�1 Pf g ð55Þ

where diagðoÞ is the diagonal matrix which is defined as diagðziÞ ¼

z1 0 	 	 	 0
0 z2 	 	 	 0

..

. ..
. ..

.
0

0 0 0 zn

2
6664

3
7775

The coefficients fB1g ¼ fB11;B12; . . . ;B1NgT and fB2g ¼ fB21;B22; . . . ;B2NgT are obtained from Eqs. (39)
and (40):

fB1g ¼ diag
e�kih

J3i � J1i
J2i

J4i

 !
fF g ¼ V

Kðcos �aa
2
Þ diag

Li þ 1ð Þ
J3i � J1i

J2i
J4i

 !
½L
�1fPg ð56Þ

fB2g ¼ diag
e�kih

J4i � J2i
J1i

J3i

 !
fF g ¼ V

Kðcos �aa
2
Þ diag

Li þ 1ð Þ
J4i � J2i

J1i
J3i

 !
½L
�1fPg ð57Þ

The coefficients fA1g ¼ fA11;A12; . . . ;A1NgT, fA2g ¼ fA21;A22; . . . ;A2NgT and fC1g ¼ fC11;C12; . . . ;C1NgT,
fC2g ¼ fC21;C22; . . . ;C2NgT will be obtained from Eqs. (22), (30), (33) and (34).

fA1g ¼ V
Kðcos �aa

2
Þ diag

H1iðLi þ 1Þ
J3i � J1i

J2i
J4i

 
þ H2iðLi þ 1Þ

J4i � J2i
J1i

J3i

!
½L
�1fPg ð58Þ

fA2g ¼ V
Kðcos �aa

2
Þ diag

H3iðLi þ 1Þ
J3i � J1i

J2i
J4i

 
þ H4iðLi þ 1Þ

J4i � J2i
J1i

J3i

!
½L
�1fPg ð59Þ

fC2g ¼ V
Kðcos �aa

2
Þ diag

1

e2v
0
ih

0 þ 1

ðH1i þ H3iÞðLi þ 1Þ
J3i � J1i

J2i
J4i

" 
þ ðH2i þ H4iÞðLi þ 1Þ

J4i � J2i
J1i

J3i

#!
½L
�1fPg ð60Þ

fC1g ¼ V
Kðcos �aa

2
Þ diag

e2v
0
ih

0

e2v
0
ih

0 þ 1

ðH1i þ H3iÞðLi þ 1Þ
J3i � J1i

J2i
J4i

" 
þ ðH2i þ H4iÞðLi þ 1Þ

J4i � J2i
J1i

J3i

#!
½L
�1fPg ð61Þ

Hence, the analytical solutions of the deflection in both the metal substrate and the piezoelectric layer, the
electric potential and electric displacement in the piezoelectric layer and the vacuum can then be obtained
from Eqs. (1)–(7), (12) and (13) upon obtaining the results of coefficients fC1g, fC2g, fA1g, fA2g, fB1g, fB2g
and fF g.
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4. Analytical solution of the structure with finitely long IDT

In the foregoing session, the analytical solution for wave propagation by infinitely long IDT has been
obtained. In the next part, the analytical solution for the wave propagation in the structure with finitely
long IDT will be discussed.

The length of IDT is assumed to be 2L. First the electric potential /0ðx1; x2; tÞ of the metal for x2 < �h is
investigated.

The Fourier transform of the function with respect to x1 is performed as,

/0ðx1; x2; tÞ ¼
1

2p

Z 1

�1

�//0ðn; x2; tÞe�inx1 dn ð62Þ

The image function �//0 can be written below according to Eq. (12):

�//0ðn; x2; tÞ ¼ �//0ðn; 0; tÞenx2 ð63Þ

The solution of image function of �//0ðn; x2; tÞ requires the knowledge of the distribution of /0 throughout the
boundary. Parton and Kudryavtser (1988) proposed an assumption that the electric potential of the vac-
uum for structure with finitely long IDT could be used by the solution of the electric potential of the
vacuum in the structure with infinitely long IDT, when they studied the Lamb wave propagation excited by
IDT without considering the piezoelectric–mechanical coupling effect. The similar assumption will be
employed again in the study of wave propagation in this piezoelectric coupled plate structure with finitely
long IDT below. In this paper, it is assumed that /0ðx1; 0; tÞ is given by Eqs. (12) and (55), which are ob-
tained by the solution for infinitely long IDT, in the electrodes region and null out side the electrodes region
for this case. This assumption should be realistic for long transducer gratings.

In view of the above statement, we find,

�//0ðn; 0; tÞ ¼
Z L

�L
/0ðx1; 0; tÞeinx1 dx1 ð64Þ

Substituting Eq. (12) into the above equation yields,

�//0ðn; 0; tÞ ¼
XN
i¼0

Fi
sinðki þ nÞL

ki þ n

�
þ sinðki � nÞL

ki � n

�
eixt ð65Þ

where Fi is expressed from Eq. (55).
Upon obtaining the distribution of the electric potential of the vacuum, the distribution of the deflection

in the host metal and the piezoelectric layer, as well as the electric potential distribution in the piezoelectric
layer will be discussed and obtained hereinafter.

The image functions for the Fourier transform of the variables u03ðx1; x3; tÞ in host metal, wðx1;
x3; tÞ ¼ /ðx1; x3; tÞ � ðe15=N11Þu3ðx1; x3; tÞ and u3ðx1; x3; tÞ in the piezoelectric layer with respect of x1, simi-
larly expressed in Eq. (62), are �uu03ðn; x3; tÞ, wðn; x3; tÞ, and �uu3ðn; x3; tÞ.

Based on the detailed analyses of these variables in Part 1 of the research, the above variables can be
written as follows:

�uu0
3ðn; x2; tÞ ¼ U

0
31ðnÞe�v0x2

�
þ U

0
32ðnÞev0x2

�
eixt ð66Þ

�uu3ðn; x2; tÞ ¼ U 31ðnÞe�vx2
�

þ U 32ðnÞevx2
�
eixt ð67Þ

wðn; x2; tÞ ¼ w1ðnÞe�nx2
�

þ w2ðnÞenx2
�
eixt ð68Þ
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where

v0 ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

nv0

� �2
s

; v ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

nv

� �2













vuut

As assumed before, the electric potential on the surface of the piezoelectric layer is the same with the
electric potential in the vacuum which is shown in Eqs. (62)–(65). Therefore, the boundary conditions in the
current case will be expressed by:

• Eq. (14), the continuity of the deflection at the interface;

U
0
31 þ U

0
32 ¼ U 31 þ U 32 ð69Þ

• Eq. (15), the continuity of the stress at the interface;

ð�vÞ�cc44ðU 31 � U 32Þ þ ð�nÞe15ðw1 � w2Þ ¼ ð�v0Þc044ðU
0
31 � U

0
32Þ ð70Þ

• Eq. (16), zero potential at the interface;

w1 þ w2 þ
e15

N11

ðU 31 þ U 32Þ ¼ 0 ð71Þ

• Eq. (17), free traction at the surface of piezoelectric layer;

ð�vÞ�cc44ðU 31e
vh � U 32e

�vhÞ þ ð�nÞe15ðw1e
nh � w2e

�nhÞ ¼ 0 ð72Þ
• Eq. (18), continuity of electric potential with the vacuum;

w1e
nh

�
þ w2e

�nh
�
þ e15

N11

ðU 31e
vh þ U 32e

�vhÞ ¼ �//0ðn; 0; tÞe�nh ð73Þ

• Eq. (21), free traction at the lower surface of the metal core;

U
0
31e

v0h0 � U
0
32e

�v0h0 ¼ 0 ð74Þ
In Part 1 of the paper, the dispersion characteristics are obtained by studying a homogeneous solution,

i.e. zero potential at the surface of the piezoelectric layer, whereas in the current study, the particular
solution is to be search as �//0 6¼ 0 in Eq. (73). The solutions for U

0
3, U 31, U 32, w1 and w2 will be obtained

below.
Similar to the dispersion characteristic analysis of the structure in Part 1, w1 and w2 can be expressed in

terms of U
0
31 and U

0
32 from Eqs. (69)–(71), as

w1 ¼
1

2
X

�
� e15

N11

�
U 31 þ

1

2
Y
�

� e15

N11

�
U 32 ð75Þ

w2 ¼
1

2

�
� X � e15

N11

�
U 31 þ

1

2

�
� Y � e15

N11

�
U 32 ð76Þ

where

X ¼ e2v
0h0 � 1

e2v0h0 þ 1

c044
e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

nv0

� �2
s

� �cc44
e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

nv

� �2













vuut

Y ¼ e2v
0h0 � 1

e2v0h0 þ 1

c044
e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

nv0

� �2
s

þ �cc44
e15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

nv

� �2













vuut
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Substituting w1 and w2 into Eqs. (72) and (73), we have,

1

2
X

�&
� e15

N11

�
enh � 1

2

�
� X � e15

N11

�
e�nh þ Zevh

'
U 31 þ

1

2
Y
�&

� e15

N11

�
enh

� 1

2

�
� Y � e15

N11

�
e�n1h � Ze�vh

'
U 32 ¼ D1U 31 þ D2U 32 ¼ 0 ð77Þ

1

2
X

�&
� e15

N11

�
enh þ 1

2

�
� X � e15

N11

�
e�nh þ e15

N11

evh

'
U 31 þ

1

2
Y
�&

� e15

N11

�
enh

þ 1

2

�
� Y � e15

N11

�
e�nh þ e15

N11

e�vh

'
U 32 ¼ D3U 31 þ D4U 32 ¼ �//0ðn; 0Þe�nh ð78Þ

where

Z ¼ 1
2
ðY � X Þ; �//0ðn; 0Þ ¼

XN
i¼0

Ci
sin ki þ nð ÞL

ki þ n

�
þ sin ki � nð ÞL

ki � n

�

From Eqs. (77) and (78), we obtain the solution of U 31, U 32 as,

U 31 ¼ �
�//0ðn; 0Þe�nhD2

D
ð79Þ

U 32 ¼ �
�//0ðn; 0Þe�nhD1

D
ð80Þ

where D ¼ D2D3 � D1D4, which is exactly the determinant of dispersion characteristics of the SH wave in
this piezoelectric plate obtained in Part 1.

w1 and w2 can be obtained from Eqs. (75) and (76) when substituting the above solutions.

w1 ¼
1

2

�//0ðn; 0Þe�nh

D
X

��
� e15

N11

�
D2 � Y

�
� e15

N11

�
D1

�
ð81Þ

w2 ¼
1

2

�//0ðn; 0Þe�nh

D

��
� X � e15

N11

�
D2 �

�
� Y � e15

N11

�
D1

�
ð82Þ

U
0
3 is obtained from Eq. (66) as,

�uu0
3 ¼

�//0ðn; 0Þe�nh

ðe2v0h0 � 1ÞD ðe�v0x2 þ e2v
0h0ev0x2ÞðD2 � D1Þ ð83Þ

Thus the deflection in the host metal, u03ðx1; x3; tÞ, is finally derived after Fourier transform,

u0
3ðx1; x2; tÞ ¼

1

2p

Z 1

�1

�//0ðn; 0Þe�nh

D
ðD2 � D1Þ

ðe�v0x2e2v
0h0 þ ev0x2Þ

ðe2v0h0 � 1Þ eixte�inx1 dn ð84Þ

The above improper integration can be discussed by the residue theorem.
A single pole in the complex integrand of the last equation is, ns, i.e. the root of the following equation,

D ¼ 0 ð85Þ
The integration of the complex function is along a close path which comprises a curve with radius R in

the upper half plane and the real axis. Note that the exponential characteristic of D is the order of e2nh,
which ensures the integration null along the curve in the upper half plane as R ! 1. Thus, the solution for
the improper integration of Eq. (84) is obtained as,
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u03ðx1; x2; tÞ ¼
i

2

�//0ðns; 0Þe�nsh

D0


n¼ns

ðD2 � D1Þjn¼ns

ðe�v0x2e2v
0h0 þ ev0x2Þ

ðe2v0h0 � 1Þ







n¼ns

expðiðxt � nsx1ÞÞ ð86Þ

It is noted that Eq. (85) is the dispersion characteristic equation of the piezoelectric coupled plate dis-
cussed in Part 1. The dispersion curve of the structure and the corresponding mode shapes of SH wave
propagation have already been obtained. As is concluded in Part 1, the first wave mode is the Bleustein–
Gulyayev surface wave propagation, such surface wave propagation can thus be excited by use of IDT from
the above analytical solution by choosing value of ns from the dispersion curve at the fixed frequency x in
the dispersion curves.

The deflection in the piezoelectric layer is similarly obtained by Eqs. (2), (67), (79) and (80) after ma-
nipulating Fourier transform as,

u3ðx1; x3; tÞ ¼
i

2

�//0ðns; 0Þe�nsh

D0


n¼ns

ðD1e
�vx2 � D2e

vx2Þjn¼ns
expðiðxt � nsx1ÞÞ ð87Þ

The solution for wðx1; x3; tÞ is obtained from Eqs. (68), (75) and (76) as follows,

wðx1; x3; tÞ ¼
i

4

�//0ðns; 0Þe�nsh

D0


n¼ns

X
���

� e15

N11

�
D2 � Y

�
� e15

N11

�
D1

�
e�nx2

þ
��
� X � e15

N11

�
D2 �

�
� Y � e15

N11

�
D1

�
enx2

�




n¼ns

expðiðxt � nsx1ÞÞ ð88Þ

The electric potential in the piezoelectric layer can be expressed from Eq. (4). This electric potential has
been assigned to be the same with that in the vacuum which, by the assumption, is by the results for the
structure with infinitely long IDT. Thus the analytical solutions for the SH wave propagation in this pi-
ezoelectric coupled structure are finally obtained. The solution reveals that the wave propagation in this
piezoelectric coupled plate bonded by IDT is just the surface wave propagation whose characteristics are
obtained in Part 1 of the paper, and the magnitude of the solution are derived accordingly in this part of
research.

5. Concluding remarks

The analytical solution for the SH wave propagation excited IDT in a piezoelectric coupled plate are
obtained in Part 2 of the research paper. The analysis is based on the surface wave solution obtained in
the Part 1 of the paper. The solution is first attempted for the case when infinitely long IDT is used in the
structure. The wave number of the wave propagation is assumed to be big enough for the derivation of the
mathematical solution of this structure. This hypothesis of the wavelength of IDT is discussed by standard
steel-PZT and gold-PZT structures, and the results show that the hypothesis can be satisfied according to
the usual design of the IDT wavelength. The solution for the wave propagation by finitely long IDT is
obtained by using Fourier transform. The distribution of the electric potential in the vacuum in this case is
assumed to be the distribution obtained for the case of infinitely long IDT. The solution from the paper also
reveals that the wave propagation in this piezoelectric coupled plate bonded by IDT is just the surface wave
propagation whose characteristics are obtained in Part 1 of the paper, and the magnitude of the solution are
derived accordingly in this paper.

The potential of the research lies in the application of IDT in the excitation of all type of waves in all
kinds of structures surface bonded by the piezoelectric layer. One of the applications is in the health
monitoring of structures by the wave propagation signals. Further work will be focused on the design of the
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IDT and its applications. Besides, other types of wave propagations, such as Lamb wave, are also needed to
be investigated for the application of piezoelectric coupled structures with IDT.
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