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Abstract

In the second part of the research on wave propagation in the piezoelectric coupled plate by interdigital transducer
(IDT), the analytical model of the wave excitation by IDT with both infinite and finite length is derived the first time.
This work is an extension of the research on the application of IDT in the piezoelectric media, which is mainly used in
time delay device. The extension of the research can provide an analytical solution for the wave excitation by IDT in a
metal substrate surface bonded by a piezoelectric layer. Such solution may have practical values in many fields, i.e. the
health monitoring of structures. In addition, such an extension enables the piezoelectric coupling effects fully modelled
in the mathematical model. The analysis is based on the type of surface wave solution discussed in Part 1 of the research
paper. The derivation of the solution for the case of infinitely long IDT is under a hypothesis of certain configuration of
the IDT wavelength. The validity of the hypothesis is verified for most of IDT wavelength designs. The analysis of the
wave propagation by use of a finitely long IDT is further obtained by Fourier transform. The mathematical analysis
shows that the wave propagation excited by the IDT is exactly the surface wave which was studied in Part 1 [Int. J.
Solids Struct., 39, 1119-1130] of the research. Hence, the analytical solution of the wave propagation in the piezoelectric
coupled plate is derived, which reveals the surface wave propagating in the structure. This theoretical research is useful
for the application of health monitoring of structures by IDT, and may be used as the framework for the design of IDT
in wave excitation of smart structures. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Piezoelectric coupled plate; Interdigital transducer; Dispersion characteristics; Wave phase velocity; Health monitoring of
structures

1. Introduction

A practical interdigital transducer (IDT) with finite length bonded by a metal plate is shown in Fig. 1.
IDT is a thin piezoelectric film surface bonded on either piezoelectric or unpiezoelectric substrate for the
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use of wave excitation or reception of structures. On the surface of the wafer, a pattern of electrodes is
designed, which comprises two alternating sets of fingers which are connected to external electric power
sources for the energy supply. As introduced in Part 1 of the paper, IDT was first used to excite the surface
wave (SAW) devices in radar communication equipment as filters and delay lines, and some consumer areas
such as pagers, mobile phones and sensors (Morgan, 1998; Campbell, 1998; White, 1998). It also has large
potential in separating, amplifying and storing signals and in other signal processing applications in
acoustoelectronics (Auld, 1973a,b; Parton and Kudryavtser, 1988). This device is recently found to have
large potential to be used as attractive sensors for various physical variables, such as force, electric fields,
magnetic fields, temperature, pressure, etc. (Varadan and Varadan, 2000).

Although there are considerable researches on the subject of analysis of IDT, the analytical solution for
the wave excitation by IDT is still unsolved completely. Most of the previous work attempted at this issue
by combining analytical and numerical methods as clearly stated by Milsom et al. (1977). The difficulties of
the analyses lie in the full electromechanical coupling in the structure. Tseng (1968), Coquin and Tierstan
(1967) and Joshin and White (1969) analysed this problem by solving an electrostatic problem, and sub-
stituted the distribution of the electric fields into the electromechanical coupled equation and hence ob-
tained the secondary electric fields and the distribution of displacement fields. In the monograph of Parton
and Kudryavtser (1988), the analytical solutions for an IDT which generates Rayleigh surface waves in a
hexagonal 6 mm piezoelectric medium was presented based on the same procedure. However, they could
not fully model the piezoelectric effects in their models. Another popular analysis proposed by Balakrirev
and Gilinskii (1982) is to use Green matrix method to solve a two-dimensional (2D) problem for a half
unbounded crystal. This method provided a situation where there is only a unit linear charge on the
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Fig. 1. Piezoelectric coupled plate surface bonded by IDT.
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boundary. However, in practice, the method is hardly feasible for an arbitrary crystal due to the difficulties
in constructing the Green matrix. Some recent progresses are contributed by the finite element method
(Hasegawa and Koshiba, 1990; Yong et al., 1998; Xu, 2000), the boundary element method (Hashimoto
and Yamaguchi, 1991), and 2D’s Green function (Huang and Paige, 1998). However, the behaviour of
SAW by IDT still cannot be predicted accurately and modelled analytically. Ogilvy (1996) presented an
approximate analysis for predicting the generation of elastic waves by IDT in multi-layered piezoelectric
materials. However, neither the width of the IDT fingers nor the dimensions of the IDT are explicitly taken
into account. All the solutions for the above mentioned applications of IDT are focused on the wave
propagation in a piezoelectric medium surface bonded by a metal layer (Zhang et al., 1993; Ventura et al.,
1995; Morgan, 1985).

As mentioned in the first part of the paper, the applications by IDT in the health monitoring of
structures have been attempted (Badcock and Birt, 2000; Monkhouse et al., 2000). In this new application
of IDT, the structure to be studied mainly consists of the metal substrate surface bonded by a piezoelectric
layer used to excite wave propagation in this piezoelectric coupled structure. Such new potential of IDT
provides a challenge for the research on the wave excitation by IDT in the piezoelectric coupled structure
mentioned in the previous paragraph. An extension for the research on the wave propagation by IDT in
piezoelectric structures is expected to provide an accurate mathematical model to couple the piezoelectric
coupling effects fully.

The purpose of this paper is to derive an analytical solution for SH wave propagation excited by IDT in
a piezoelectric coupled plate. The dispersion characteristics of the wave propagation have already been
discussed in Part 1 of the paper based on the type of surface wave solution. The mathematical governing
equation and corresponding boundary conditions for the analytical solution for the wave excitation are
provided with infinitely long IDT modelled first. A hypothesis on the wavelength of IDT is discussed for the
deduction of the analytical solution and verified. The analytical analysis of the wave propagation with a
finitely long IDT is further obtained by Fourier transform. The derivation of the analytical solution for the
wave propagation in the piezoelectric coupled structure by IDT is important in the design of IDT in the
health monitoring of structures and other engineering applications.

2. Mechanics model of wave propagation by use of IDT

An IDT was deposited on the piezoelectric coupled plate shown in Fig. 1. An electric voltage is hence
provided across the electrodes producing an alternative electric field in the materials and causing wave
propagation of the same frequency in the piezoelectric coupled plate.

The dispersion characteristics of the SH wave propagation in this structure has been studied in the first
part of the paper, and the type of SAW solution has been presented. In this part, the wave excitation by use
of IDT will be studied hereafter.

As the solutions for the deflection and shear stress of the metal core, the deflection, the electric potential
and the shear stress of the piezoelectric layer have already been obtained in Egs. (13), (17)—(23) in the first
part of the research, the following deductions will be shown without repeating the same procedures in the
first part of the research paper.

According to the coordinate system in Fig. 1, since the IDT is infinite length and the period of electric
field in x; is 4L due to the wavelength of IDT, the above displacement solution for metal part can be
expressed in form of series as,

W= (Cne’zﬁx2 + Czielf“z)ei(‘“”k’“‘) (1)
i=iy
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where

s 1 , o\’ ol 1
ki L<l+2>7 ti =k (k,—v’) M |:U' T 2]

The symbol [-] means the integer part of a number. From the expression of iy, it can be seen the condition of
w/k; < v is satisfied, which means the surface wave solution is employed in the discussion as stated in Part 1
of the research.

Similarly, the deflection of the piezoelectric layer can be expressed as follows based on the solutions in
Part 1,

= ; . ki, 1)
- A i ~H2 A i Xi%2 t— ! h — < 5 / 2
u; ,-5:1( 118752 4+ 48477 ) exp (1a)< > )) when i v,V (2)
Uy = éz (A1 cos yxz + Ay sin yx;) exp | iw t—kixl when v > 2 > p (3)
3 = li AiX2 2i AiX2 s k.
where
c L 1
/l:ki 1)2:—C44, i2: |:g———:|, IZmaX(il,iz)
0 v 2

According to Egs. (19) and (20) in Part 1, the electric potential is obtained,

= ki . e . . . kix o)
¢ = Z; {(Bl,-e k2 4 Byefi) +ﬁ(A1ie 12 4 A58k 2)] exp <1w(t —ﬁ)) if < v, v’ 4)

1

L e . . k; .
¢ = Z {(Bl,-e""x2 + Bz,-ek"‘z) + g(Alicos 1:X2 + Ay sin X,.xz)] exp (10) (t _ )) if v >e>v
11 w

i=i]
(5)
The electric displacement is thus obtained by

0 0 - . k; .
D2 — 615£ _ = _¢ — Z _E“ki(_Bliefkixz —&—Bz,-e""xz)exp (1w(t — %)) if % <v, 1)/ (6)

£33
6x2 6x2 =1

o . ki .
D, = Z —Enki(—Be ™ + Byef™) exp <1w (t - (il )) ifv'>c>v (7)

i=i]

The shear stress in the metal core is expressed as follows from Eq. (21) in Part 1,
o= [~ Z)cue e 4+ 7Caete] exp (oo 1~ 0 (8)
23 - 44 i i il w

The shear stress in the piezoelectric layer is shown from Egs. (22) and (23) from Part 1,

[o 0]

; . ki .
023 = Z [( — }{I»)E44(A1,-67K‘X2 — Az,-el"z) + ( — k,-)el5(Blie*k‘x2 — Bz,-ek'xz)i| €xXp (ICO (l — ::1 )> if % <v, v

i=I
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and

B . . k,-x
on =Y {( — :)Caa (A Sin g2 — A €08 1x2) + (— ki)ers (Bre ™ — Bzie"f"z)} exp <1w <t - wl ))

=iy
ifv>c>v (10)
The potential ¢’ in the vacuum can be derived by solving the electronic Maxwell equation,
V3 =0 (11)

Such solution for ¢’ and D’ can be obtained as follows when seeking the solution which remains finite as
Xy — —0OQ:

- . k;
¢ = ZO:EG:""’(2 exp <1a) (t - (jl >) (12)

D = Z —Eok;Fe"™ exp (ia) (t — %)) (13)

i=0
The above mathematical model can be solved analytically together with the following boundary conditions,
at x, = 0:

Uz = Uy (14)

023 = 0',23 (15)

¢ =0 (16)
at x, = —h:

023 = 0 (17)

b=¢ (18)

D, = D' (outside electrodes) (19)

¢ = ¢' =V (inside electrodes) (20)
at x, = n:

05 =0 (21)

The analytical solution for the wave propagation in the piezoelectric coupled plate with infinitely long IDT
and finitely long IDT will be given in the following sections separately.

3. Analytical solutions for wave propagation with infinitely long IDT

The deflection, electric potential and stress in the piezoelectric layer are expressed by Egs. (2), (4) and (9)
irrelevant of the comparison of the bulk shear wave velocities of the metal substrate and the piezoelectric
layer. Nevertheless, Egs. (3), (5) and (10) are only valid for the case that the bulk shear wave velocity of the
host metal plate is larger than that of the piezoelectric layer. In order to obtain the analytical solution for
the above mathematical model given in the previous section, a hypothesis on IDT wavelength is provided,
i.e. I = max(i,i,) = 0. This hypothesis reveals the fact that the all the solutions of the physical variables in
the piezoelectric layer will follow Egs. (2), (4) and (9) by proper design of the basic wave number ko = /2L,
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i.e. the design of wavelength of IDT. Taking steel-PZT 4 piezoelectric coupled plate as an example, the bulk
shear wave velocity of steel and PZT 4 are about v|geer = 3281 m/s, v|pzr4 = 2351 m/s. If the frequency of
the excitation voltage is used as 1.4 MHz applied to the IDT. The hypothesis of / = 0 requires L < 5.5 mm,
which means the wavelength of IDT is 2.2 cm. Such requirement is satisfied by most of the designs of IDT
wavelength. When gold-PZT 4 is employed in the estimations, it shows that the wavelength of the standard
electrode pattern is around 1.1 cm which can also be satisfied in most of the designs of the IDT. Upon the
above observations, the hypothesis of using Egs. (2), (4) and (9) for the solutions of wave propagation in
the piezoelectric layer is thus reasonable and valid for most of the IDT designs, and will be used in the
following analysis. It is noted that all the above analyses are based on the surface wave solution assumed in
the piezoelectric layer. The wave excitation of other types of the wave solutions by IDT is beyond the scope
of this paper.

Boundary conditions expressed in Eqs. (14)—(21) are rewritten as follows when the solutions in the metal
substrate, the piezoelectric layer, and the vacuum are taken from the preceding analyses:

Z(Clz + Cy )™ Z (A1 + Ay )™ (22)
i=0 i=0
Z(*X,-)EM(AU — Ay) + (—k)eis(By; — By)e™ Z —10)Chu(Cri — Cyy)em (23)
i=0 i=0
Z <Bli + By +s = > (A +Azz)) k=0 (24)
i=0 =1
Z((—Xl-)Z’M(AU@ZZh — Azieixzh) + (—k,-)el5(BlieXIh — BZi67XIh))eikixl =0 (25)
i=0
> ((Bl-le“h + Bye ") + o5 (A + Az,-ellh))e”‘""‘ = Fe el (26)
i=0 =11 -
2(7511(—1\7,-3“&[’1 + kiBye ") 4+ BpkiFe f M)t =0 a<x <L (27)
i=0
Y Fetet =0 0<x <a (28)
=0
S (Cue” — e =0 (29)
=0

The mathematics solution for all the seven non-zero coefficients Cy;, Cy;, Ay;, A2, Biiy Baiy F; (i =1,2,...,00)

will be obtained from Egs. (22)-(29).
From Eq. (29), we have

Cy = CZiCZX/hI (30)
Substituting the above expressions in Egs. (22)—(24) yield the following relations,

Api+ Ay = —;—“(BwBZf) (31)
15
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A — Az = GBy; + GyuBy; (32)
where
G.:fk"e15 LiCa4 ~11 e —1 G-:kiels AiCla Hll e — 1
! AiCas  YiCas €15 €M + 17 ” 1:Caa  YiCas €15 €27 + 1

Thus A4;; and 4,; are obtained from the above equations as,

Ay = HBy; + HyBy; (33)
Ay = H3yBy;i + HyBo; (34)
where

1 Ep 1 G 1 Ei 1 Ep
Hi=-|\Gi—— ), Hy=7|Gy—— |, Hy=- Gy + , Hy=—-|Gy+—
! 2(1 615> 2 2<2 615> 3 2(1 615) 4 2<2+615>

Substituting Egs. (33) and (34) into Egs. (25) and (26) yields,

h ok ~ wn kieis
<H1ie/”ih — Hye 4 228 kh>Blz + <H2ie/*"h — Hyenh — =8 kh>321 =0 (35)
AiCaa AiCaa
1e.
JiiB1i + 2By = 0 (36)
(ek"h + 22 Hyer + ing,»e%f’“> By + (ek“h + 22 Hye! + iim,-elf”) By = Fe ™ (37)
=11 211 211 =11
ie.
J3iBi + JuiBy = Fre " (38)
The coefficients B; and B,; can thus be expressed in terms of F; as follows:
F —kih
By = 67 (39)
J 3i T Joi J4l
F —kih
By=—" (40)
Jai =75

Substituting the above two expressions into Eq. (27) gives,

ZkF O - L Ene™ \ i _
e o+ Y e =0 a<x <L (41)
Ji 11J41 J4z - 7‘]31
By defining
- _kih - —kih
— 7 =11€7 Z1e
F,=Fe |5, +—1 - 42
( v _5_;-]41' Jai —%Jzi “2)

Egs. (28) and (41) may be rearranged as

Zfieik"x‘ =0 0<x <a (43)
i=0
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S EF(1+L)e" =V a<x <L (44)
i=0

where

-1
o —kih
Z11€
Li=|Z+ —1
1 (K Ri— %Ry Ry — QZ'R1,>

Rewriting Eqs. (43) and (44) in their real function forms gives,

N 1

ZF,-COS(Z'—FE))_C:O a<xi<m (45)
i=0

(. 1\& AW -

Z(z+E>F,«(1+L,«)cos<z+§)x=V 0<x<a (46)
i=0

where X = mx, /L, a = na/L.

The solutions for Egs. (45) and (46) can be obtained from an infinite system of linear algebraic equations
(Bateman and Erdelyi, 1955; Parton and Kudryavtser, 1988).

The set of equations are given as,

Foo_ JRCOSa)  NNps 1,2, e0) (47)

(i+%)K<cos§> =0

where
B = <l-|— ) (cos &)P(cos &) sin EdE (48)
0
V2 cos (z +1)xdx

Fi(cosé) _7/0 \/cosx — cos & (49)

€\ _ v~ P(cosg)
K(COSZ>_IZ_O:(1'+%) (50)

Pi(cos&) in the above equation is the standard integral representation for Legendre polynomial and
K(cos£/2) is the full elliptic integral of the first kind (Bateman and Erdelyi, 1955).

If the finite N terms are used in Eq. (47) on the condition that the convergence of the solution is ensured
by the Legendre polynomial theory, the result of the coefficients F; (i = 1,2,...,N) can thus be obtained
from the following equation:

L){F} = K(CVOS%){P} Y
where
1+Lify LBy -+ LyPw

Lifin Lo Py w1+ LBy
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Py cosa)
P,(cosa)
{pP} = : (53)

Py(cosa)

and {F} = {F\,F,,...,Fy}".
From Eq. (51), the solution of {F} is obtained as,

_ v .
F} =——IL| {P 54
) = Reou 1P (54)
The coefficients {F} = {F}, P, ... ,FN}T is thus derived from Eq. (42)
(F} = diag(e" (L, + 1)) {F} = ﬁdiag(ek’h(b L D)L P (55)
2 2 0 - 0
' ' 0 z --- 0
where diag(o) is the diagonal matrix which is defined as diag(z;) = -

The coefficients {B,} = {B11, B, .- ,BIN}T and {B,} = {By,Bn, ... 7BZN}T are obtained from Egs. (39)
and (40):

{Bl}—diag(%){n—K(Czsg)diag<%>mI{P} (56)
{Bﬁdiag(ﬂ){ )= (Czsz)diag<m>mlm (57)

The coefﬁcients {Al} = {A“,Alz, e ,A]N} N {A2} = {Azl,Agz, Cen ,AZN}T and {Cl} = {C]l, C12, caey ClN}T,
{G} ={C, Cray - . CzN}T will be obtained from Egs. (22), (30), (33) and (34).

=g K(cos§ )diag<[j;(fi§;i) +Ijjj(fi£Jiz~)>[L]_l{P} %)
=g e 5 G e ®
e )diag<621;h,l+1 <H”J+I_H3')f 2D (HJ*T%* J )[L]I{P} (60)

Hence, the analytical solutions of the deflection in both the metal substrate and the piezoelectric layer, the
electric potential and electric displacement in the piezoelectric layer and the vacuum can then be obtained
from Egs. (1)—(7), (12) and (13) upon obtaining the results of coefficients {C,}, {C>}, {41}, {4>}, {B1}, {B:2}
and {F}.
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4. Analytical solution of the structure with finitely long IDT

In the foregoing session, the analytical solution for wave propagation by infinitely long IDT has been
obtained. In the next part, the analytical solution for the wave propagation in the structure with finitely
long IDT will be discussed.

The length of IDT is assumed to be 2L. First the electric potential ¢'(x;,x,,¢) of the metal for x, < —A is
investigated.

The Fourier transform of the function with respect to x; is performed as,

@' (x1,x2,1) / P (¢ e de (62)
The image function ¢’ can be written below according to Eq. (12):

§(&xa,1) = §(2,0,0)e (63)

The solution of image function of ¢'(¢, x,, t) requires the knowledge of the distribution of ¢’ throughout the
boundary. Parton and Kudryavtser (1988) proposed an assumption that the electric potential of the vac-
uum for structure with finitely long IDT could be used by the solution of the electric potential of the
vacuum in the structure with infinitely long IDT, when they studied the Lamb wave propagation excited by
IDT without considering the piezoelectric-mechanical coupling effect. The similar assumption will be
employed again in the study of wave propagation in this piezoelectric coupled plate structure with finitely
long IDT below. In this paper, it is assumed that ¢'(x;,0,7) is given by Egs. (12) and (55), which are ob-
tained by the solution for infinitely long IDT, in the electrodes region and null out side the electrodes region
for this case. This assumption should be realistic for long transducer gratings.

In view of the above statement, we find,

L
(Z),(éaoat) = / (bl(xlvoat)eiix‘ dxl (64)
-L
Substituting Eq. (12) into the above equation yields,
N . . g
_— B sin(k; + &)L sin(k; — &)L
R N e s v (65)

where F; is expressed from Eq. (55).

Upon obtaining the distribution of the electric potential of the vacuum, the distribution of the deflection
in the host metal and the piezoelectric layer, as well as the electric potential distribution in the piezoelectric
layer will be discussed and obtained hereinafter.

The image functions for the Fourier transform of the variables u;(x;,x3,¢#) in host metal, (xi,
X3,8) = d(x1,x3,1) — (e15/511)us(x1,x3,¢) and u3(xy,x3,¢) in the piezoelectric layer with respect of x;, simi-
larly expressed in Eq. (62), are u}(¢,x3,1), ¥(&,x3,1), and u3(&, x3,1).

Based on the detailed analyses of these variables in Part 1 of the research, the above variables can be
written as follows:

(&, xa, 1) = (U/n(é)e*z’xz +U;2(5)ez’xz)em )
17!3(67)62, t) = (Un(f)e*m +U32(§)ezx2)ei"” (67)

W(&,xa,1) = (1 (E)e™™ + (e e (68)
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As assumed before, the electric potential on the surface of the piezoelectric layer is the same with the
electric potential in the vacuum which is shown in Egs. (62)—(65). Therefore, the boundary conditions in the
current case will be expressed by:

o Eq. (14), the continuity of the deflection at the interface;

U;l + U,32 = U31 + U32 (69)
o Eq. (15), the continuity of the stress at the interface;

(—1)ewu(Ts1 = Un) + (=Eers(l) = V) = (—7)u(Ty ~ T) (70)
e Eq. (16), zero potential at the interface;

_ — e I —

¢1+¢2+:—1151(U31+U32):0 (71)
e Eq. (17), free traction at the surface of piezoelectric layer;

(—1)cas(Usie? — Une ™) + (=E)eris(fie™ — e ) =0 (72)
e Eq. (18), continuity of electric potential with the vacuum,;

(Yre +e) + i (Usie” + Une ™) = ¢(£,0,1)e™" (73)

=11

Eq. (21), free traction at the lower surface of the metal core;
Uye" —Uhe " =0 (74)
In Part 1 of the paper, the dispersion characteristics are obtained by studying a homogeneous solution,
i.e. zero potential at the surface of the piezoelectric layer, whereas in the current study, the particular
. . - . . — = -— —_ —_ . .
solution is to be search as ¢’ # 0 in Eq. (73). The solutions for Us, Uz, Usy, ¥, and y, will be obtained
below. B .
Similar to the dispersion characteristic analysis of the structure in Part 1, i, and i/, can be expressed in
terms of U, and Us, from Egs. (69)~(71), as

— 1 e — 1 e _
lpl_—<XH—”)U31+—<Y$>U3Z (75)
2 E1 2 Hyy
- 1 €15 \+ 1 €15 \+
b=z X Un+5(-¥ -2 )0 (76)
Eip CH
where
N eZZ”" —1 C£14 1 w 2 Cq4 1 w 2
e 1 e &v e1s év
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Substituting ¥, and v, into Eqs. (72) and (73), we have

L1 N S :
{ (X—ils)ed’ —(—X—ils>e_gh—|—Ze‘h}U31 + {<Y—i15>egh
2 211 2 =11 2 =11
! 5 \o-tih _ zonn \ 7 U U
B0 1 Gk - Uspy = M U3 + U3y =0

(77)
1 x-S LY S NIAIERNTRY 5 A 1 y — S5 o
2 11 2 11 2

=

=11

—
=

=11
+l<_ y_ei)e—éh+ €15 o
2 =

=11
° }u32 — AU + 44Tss = §/(E,0)c
E11 G
where
sin (k; + &)L sin (k; — &)L
Z=Yy-Xx), ¢ G
el Z ( [
From Egs. (77) and (78), we obtain the solution of Us;, Us, as
— b (¢,0)e A
A 4)16 2 (79)
— b (E,0)e¢ A
A G 4)16 ! (80)
where 4 = Ay4; — A, 44, which is exactly the determinant of dispersion characteristics of the SH wave in
this piezoelectric plate obtained in Part 1.

¥, and ¥, can be obtained from Egs. (75) and (76) when substituting the above solutions
— 1@ (&E0) e
J 190

€15 €15

(81)
—éh
oS () (1))
4 En En
U, is obtained from Eq. (66) as

(82)
90

37T (W —1)4 (e + &™) (4, — A1)

(83)
Thus the deflection in the host metal, u}(x;,x3,?), is finally derived after Fourier transform

C —¢h e 12/ W _,’_ez'xz
I/l x13x27 27_[:/ ¢ (Az_Al)( )

iof ,—iéx;
@7 1) e”e M de
The above improper integration can be discussed by the residue theorem

(84)

A single pole in the complex integrand of the last equation is, ¢, i.e. the root of the following equation
A=0

(85)
The integration of the complex function is along a close path which comprises a curve with radius R in
the upper half plane and the real axis. Note that the exponential characteristic of A4 is the order of e,
which ensures the integration null along the curve in the upper half plane as R — oo. Thus, the solution for
the improper integration of Eq. (84) is obtained as
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(e*Z,xZ ezx/hl + eX,XZ)
(AZ - Al)|5:§: (eZZIh, _ 1)

{
=& &=

_ i 4, 0)e
=5

(X1, X2, 1) exp(i(wt — Ex1)) (86)

It is noted that Eq. (85) is the dispersion characteristic equation of the piezoelectric coupled plate dis-
cussed in Part 1. The dispersion curve of the structure and the corresponding mode shapes of SH wave
propagation have already been obtained. As is concluded in Part 1, the first wave mode is the Bleustein—
Gulyayev surface wave propagation, such surface wave propagation can thus be excited by use of IDT from
the above analytical solution by choosing value of £ from the dispersion curve at the fixed frequency w in
the dispersion curves.

The deflection in the piezoelectric layer is similarly obtained by Egs. (2), (67), (79) and (80) after ma-
nipulating Fourier transform as,

i J’l(é“ O)e_ish

uz(x1,x3,¢) = 3 (A1e772 — A2e"?)|._. exp(i(wt — &xi)) (87)

|
&=¢s

The solution for ¥(x;,x3,¢) is obtained from Egs. (68), (75) and (76) as follows,

i &' (£ 0)e 5" )
i = P (02 ) (rog)a)e
4 4 |5:5. =11 =11

(g ()
=11 =11

The electric potential in the piezoelectric layer can be expressed from Eq. (4). This electric potential has
been assigned to be the same with that in the vacuum which, by the assumption, is by the results for the
structure with infinitely long IDT. Thus the analytical solutions for the SH wave propagation in this pi-
ezoelectric coupled structure are finally obtained. The solution reveals that the wave propagation in this
piezoelectric coupled plate bonded by IDT is just the surface wave propagation whose characteristics are
obtained in Part 1 of the paper, and the magnitude of the solution are derived accordingly in this part of
research.

exp(i(wt — &xy)) (88)

¢=¢

5. Concluding remarks

The analytical solution for the SH wave propagation excited IDT in a piezoelectric coupled plate are
obtained in Part 2 of the research paper. The analysis is based on the surface wave solution obtained in
the Part 1 of the paper. The solution is first attempted for the case when infinitely long IDT is used in the
structure. The wave number of the wave propagation is assumed to be big enough for the derivation of the
mathematical solution of this structure. This hypothesis of the wavelength of IDT is discussed by standard
steel-PZT and gold-PZT structures, and the results show that the hypothesis can be satisfied according to
the usual design of the IDT wavelength. The solution for the wave propagation by finitely long IDT is
obtained by using Fourier transform. The distribution of the electric potential in the vacuum in this case is
assumed to be the distribution obtained for the case of infinitely long IDT. The solution from the paper also
reveals that the wave propagation in this piezoelectric coupled plate bonded by IDT is just the surface wave
propagation whose characteristics are obtained in Part 1 of the paper, and the magnitude of the solution are
derived accordingly in this paper.

The potential of the research lies in the application of IDT in the excitation of all type of waves in all
kinds of structures surface bonded by the piezoelectric layer. One of the applications is in the health
monitoring of structures by the wave propagation signals. Further work will be focused on the design of the
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IDT and its applications. Besides, other types of wave propagations, such as Lamb wave, are also needed to
be investigated for the application of piezoelectric coupled structures with IDT.
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